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Chemisorption on inverse-supported catalysts: H-ZnO/Ni* 
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The chemisorption energy of hydrogen on a semiconductor/metal  composite 
substrate is investigated using the complex-energy-plane integration approach. 
The electronic properties of the interfacial substrate are described via a 
Green-funct ion formalism. The tight-binding approximation is employed to 
model the semiconductor catalysts by a finite chain of alternating s- and 
p-orbitals, while the semi-infinite metal support is represented by a linear 
chain of d-orbitals. Specific calculations are performed for the H - Z n O / N i  
system. 
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1. Introduction 

Nowadays,  most industrially important catalytic reactions employ supported 
catalysts of  the synergetic type [1]. However, as was pointed out in a previous 
paper  [2], there is a dearth of  quantum-mechanical studies on such composite 
systems. Indeed, in the case of inverse-supported catalysts, not a single quantal 
investigation appears to have been made of the chemisorption properties of these 
important interfacial systems. The present paper  is the first attempt to remedy 
this situation. 

Calculations have been performed for hydrogen chemisorption on a ZnO catalyst 
supported by a Ni base. Specifically, results are presented showing the variation 
of  the hydrogen chemisorption energy (AE) with the thickness (Nsc) of  the ZnO 
film. Unlike the earlier treatment [2] of the H - N i / Z n O  case, AE is obtained via 

* Dedicated to Professor J. Koutecks) on the occasion of his 65th birthday 
t On leave at the Department of Physics, Texas A&M University, College Station, TX 77843-4242, 
USA 
$ Also the Guelph-Waterloo Program for Graduate Work in Physics 



252 W . K .  Liu and S. G. Davison 

the complex-energy-plane integration technique, while the electronic properties 
of  the composite substrate are again described by using a Green-funct ion (GF) 
method within the framework of the tight-binding approximation. 

2. Chemisorption energy and complex energy formulation 

Similar to the one-electron model of Einstein and Schrieffer [3], we shall describe 
our chemisorption system by Ho+ V, where Ho = Hs + Ha is the Hamiltonian of 
the substrate and an isolated atom (energy Ea), and V is the adatom-substrate 
interaction. If  V is modelled by a bond of  strength/3 between the adatom and 
the surface atom, the chemisorption energy can be written as [3] 

E = - - I r a  l n [1 - f l 2Gaa(E+iO-~ )Goo(E +iO +)]  dE, (2.1) 
77" 

where the adatom GF G~,,~( E + iO +) = ( E - Ea + iO+) -1 and G0o(E) is the substrate 
GF at the surface site. For real E, depending on the complexity of  Goo(E), the 
integrand of (2.1) can exhibit sharp peaks due to resonances. Furthermore, for 
large values of/3, there exist localized states whose energy Es satisfies Es - Ea - 
/32 Re Goo(E~) -- 0 outside the substrate band, which must be located numerically 
in general. Thus, the direct numerical evaluation of (2.1) can become rather 
cumbersome. However, if we allow the energy E to become complex, its imaginary 
part will damp out the resonances and isolate any singularities due to localized 
states, rendering the integrand for AE a smooth function of  energy and the 
resulting integral very easy to evaluate. 

To proceed, let 

f ( z )  = In [1 -/32Gaa(Z)Goo(Z)] (2.2) 

which is analytic in the complex z-plane, except along the branch-cut and at 
singularities located on the real axis. Since the GF's satisfy G ( z * ) =  G*( z ) ,  it 
follows that 2i I m f ( E  + i0 +) = f ( E  + iO +) - f ( E  - iO+), so that (2.1) becomes 

A E  = - - ( T r i )  -1 f d z f ( z ) ,  (2.3) 
3 c1 

where C1 is the path in the complex z-plane shown in Fig. 1, which starts from 
Ev + i0 +, goes around the branch-cut and singularities o f f ( z )  and ends up at 
E~ - i0 +. By Cauchy's theorem, the path C1 can be deformed into any path which 
avoids the singularities on the real axis [4]. A particularly convenient path for 
the present tight-binding model is the semi-circular path C2 indicated in Fig. 1 
[5]. Since G ( z )  ~ z -~ as z ~ o0, f ( z )  ~ z -2 as z ~ ~ and the contribution from the 
semi-circle at infinity to the integrand is zero by Jordan's lemma. Thus, we only 
have to evaluate the integral along the straight path E e + i y  for - ~ < y  < ~ .  

Furthermore, using the reflection symmetry of f ( z )  about the real axis, the 
expression for AE becomes 

fo A E  = -27r  -~ Re  f ( E F  + iy) dy. (2.4) 
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Fig. 1. Contour path in complex plane for integration 
of (2.3) 

?, - iO+ Rez 

E F- i0 + 

In  ac tua l  compu ta t i on ,  t he  integral  of  (2.4) is t r ans fo rmed  into one with finite 
l imits  by  the  subs t i tu t ion  y = x/(1 - x), and then  eva lua ted  with s t anda rd  Gauss i an  
quadra tu re .  

3. Substrate Green function 

The meta l  s u p p o r t e d - s e m i c o n d u c t o r  subs t ra te  will  be desc r ibed  by  the one-  
d imens iona l  t igh t -b ind ing  mode l  shown in Fig. 2, which  is essent ia l ly  the one 
used  by  Dav i son  et al. [2], except  that  the roles o f  the  s emiconduc to r  and  the 
meta l  are reversed.  The  subst ra te  G F  at the surface site, which  enters  the 
express ion  for  AE [see (2.3) and  (2.4)], can be der ived  f rom the Dyson  equa t ion  
a p p r o a c h  [2] as 

Goo(z)=g2(O,O)+y2g2(O, n)g2(n,O)[g~l(n+l, n+l)-'y2g2(n, n)]  -1, (3.1) 

where  g (i, j) is the G F  be tween  the ith a n d j t h  sites o f  the i so la ted  a t h  c o m p o n e n t  
of  the subs t ra te  (ce = 1 for  the semi-infini te  metal ,  ~ = 2 for  the infinite semiconduc-  
tor) ,  the energy d e p e n d e n c e  be ing  suppressed .  

Fo r  the semi-infini te  meta l ,  we have for complex  energy z, 

g,(n + 1, n + 1) = [z 1 - -  ( Z 2 1  - -  1) ' /2] /]3, ,  (3.2) 

where  zl = ( z - a l ) / ~ l  and  the b ranch-cu t  of  ( z ~ - 1 )  1/2 is t aken  to be be tween  
• It can easi ly be  shown that  gl in (3.2) reduces  to that  given by  Ueba  [6] 
when z = E + i0 +. 

Express ions  for the G F ' s  of  the finite s emiconduc to r  gz(n', n) are more  compl i -  
cated.  They can,  however ,  be  wri t ten in terms of  the G F ' s  o f  the  infinite semi- 
conduc to r  G2(rn, n) by the Dyson  equa t ion  a p p r o a c h  [2]. Af ter  some algebra ,  

H Z n O  Ni 

" ' "  - | B,O 
a 0 1 2 n n + l  

Fig. 2. Diagrammatic representation of H-ZnO/Ni system showing hydrogen adatom a of electronic 
energy e o with bond energy/3 to the Zn surface atom at m = 0. The ZnO film, lying between 0-< m ~< n, 
is depicted by a chain of alternating (Zn)s- and (O)p-orbitals with corresponding site energies a s 
and ap and bond energies • The bond of energy 3' attaches film to first (m = n + 1) Ni atom in 
semi-infinite Ni support containing atoms of site energy cq and bond energy/31 
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we obtain  

g2(0, 0) = [DO2(0,  0) - BG2(0, n)] /A  

g2(n, 0) = [AG2(0, n) - CG2(0, 0)] /A 

g2(0, n ) =  [DG2(0,  n ) - B G 2 ( n ,  n) ] /A  

g2(n, n) = [AG2(n,  n) - CG2(0, n ) ] /A,  

where  

A = 1 +/32G2(0, - 1 )  

B = f12G2(0, n + 1) 

C = fl2G2(n, - 1 )  

D = 1 +/32G2(n, n + 1) 

and 

a = A D  - BC. 
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(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Since we assume that  the Z n O  film (thickness Nsc)  is bonded  to the Ni base  via 
an oxygen a tom,  n = 2 N s c - 1 .  

Explicit  expressions of  G2(m, n) have been given by Bose and Foo [7]; the 
der ivat ion is summar i sed  in the Append ix  and  their  analyt ic  cont inuat ion  into 
the complex-energy  p lane  is discussed. The diagonal  G F ' s  can be writ ten explicitly 
as  

G2(n, n) = ( z - % ) /  f l~b(z)  (3.12a) 

and 

G2(O, O) = (z  - % ) / f l ~ b ( z ) ,  (3.12b) 

where 

f l2b(z)  -- [(z  - % ) ( z  - ap)(Z - % - w) ( z  - ap - w)] '/2 (3.13) 

with w = ( e 2 + 4 f l 2 ) l / 2 - e  and e = � 8 9  The funct ion b(z)  has branch-cuts  
along the real axis f rom % - w to ap and f rom as to % + w, i.e., across the valence 
and conduc t ion  band  energies. The off-diagonal  G F ' s  appear ing  in (3.3) to (3.10) 
can be expressed  in terms of  G2(0, 0) as 

(72(0, 1) =/32G2(0, 0)[1 + u < ( z ) ] / ( z  - % )  (3.14) 

G2(0, n) = f12[ G2(0, n + 1) - G(0,  n - 1 ) ] / (z  - ap) (3.15) 

with 

G2(0, n :L 1) = G2(0, O)u<(z) n-</2 (3.16) 

and 

Ge(n, - 1 )  = (z - % ) ( z  - % )  1G2(0, n + 1), (3.17) 

where  

u < ( z ) = � 8 9  a = 2 - ( z - a s ) ( z - % ) / ~ .  (3.18) 
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Note that b(z) defined by (3.13) is also equal to (32-4/32) 1/2. By symmetry, and 
noting n is odd, G2(n, n + 1) = G2(-1,  0) -- G2(0, -1) ,  so that A = D. We can also 
show by substituting (3.12), (3.16) and (3.17) into (3.4), (3.5), (3.8) and (3.9) 
that g2(0, n) = gE(n, 0). 

Finally, we n. otice that, since lu<] < 1, the off-diagonal GF's G2(0, n) and G2(0, n + 
1), as given by (3.15) and (3.16), vanish as n~oo ,  so g2(0, n) also vanishes. In 
this limit, the substrate surface GF (3.1) reduces properly to 

Goo(Z) = g2(0, 0) = G2(0, 0)[1 + flEG2(0, -1 ) ]  -1, n -~ oo (3.19) 

which is the surface GF for a pure semiconductor substrate. 

4. Results and discussion 

We have calculated values of AE for a model of hydrogen chemisorption on the 
ZnO/Ni  substrate as a function of the number of layers of ZnO Nsc= �89 + 1). 
The energy zero was chosen to be at the Fermi level of bulk Ni, for which the 
parameters 31 = -1.7 eV and/3~ =0.95 eV were used [2, 8], while for ZnO, we 
chose [2] as = 0.0 e V, ap = -3 .4  eV and ~2 = 3.755 eV, giving a bandwidth w = 6 eV. 
The Ni-ZnO bond y = �89 +/32) = 2.35 eV [2]. The adatom level is approximated 
by the formula [9] Ea = -�89 + A), where I and A are the ionization energy and 
affinity level of  the adatom, respectively. For hydrogen, Ea = -2.7 eV, which lies 
within the range of the effective adatom level e~ determined self-consistently 
within the Hartree-Fock approximation [2]. Finally, the H-ZnO bond /3 was 
chosen to be 3.0 eV, so that the resulting AE for a pure ZnO substrate [calculated 
by using (3.19) in (2.4)] is very close to the experimental value of  -2.67 eV [10]. 

Fig. 3 shows a plot of the integrand of (2.4), Ref(Ev + iy) [where f (z)  is given 
by (2.2)] as a function of y for the case Nsc = 4, which demonstrates clearly that 
Ref (Er+iy)  is a smooth decreasing function of y. In Table 1, we present the 
main results of our calculation, the values of AE for different number of layers 
of ZnO. For N ~ < 3 ,  AE(Nsr is higher than AE(oo), the value for a pure ZnO 
substrate. At Ns~=4, AE is lower than AE(co). For Ns~> 5, AE rises from the 
minimum value AE(4) to AE(oo). However, even at N~ = 15, AE(N~c) still differs 
from AE(oo) slightly. 

One possible interpretation of the presence of a minimum in the behaviour of 
AE with N~o is the following. Since the work function of metals is generally less 
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-~ 1.2- + 

v 
0.8- 

rr" 

0.4- 

Fig.  3. Plot  o f  the  i n t e g r a n d  R e f ( E  v + iy) o f  (2.4) 

as  a f u n c t i o n  o f  y fo r  N s c = 4  
21o 41o 61o 

Y 
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Table 1. Variation of AE 
with N~o for y = 2.35 eV 
and fl = 3.0 eV. For Nsc = 
co (pure ZnO substrate), 
AE = -2.675 eV 

X,c AE (eV) 

1 -2.409 
2 -2.468 
3 -2.545 
4 -2.776 
5 -2.756 
6 -2.736 
7 -2.715 
8 -2.709 
9 -2.702 

10 -2.694 
15 -2.687 

than  that of  semiconductors ,  before contact  E ~ > E ~ .  Consequent ly ,  dur ing the 

in i t ia l  s t a g e s  of the ZnO film growth on the Ni support ,  electrons pass from the 
Ni to the Z n O  and  provide a "source"  of  charge for transfer to the H adatom, 
thus enhanc ing  bond  format ion  and  increasing [AE I. Subsequent ly ,  however, a 
t h resho ld  p o i n t  is reached (N~o--4), when the thickness of the ZnO  film becomes 

such as to provide a " s ink"  for electrons coming from the Ni and,  to a lesser 
extent from the H adatom,  thus reversing the flow of charge a w a y  f r o m  the H 

adatom, so that IAE] now decreases with increasing Nso unti l  it attains the 
A E ( Z n O )  value. 

5. Concluding remarks 

The above results are encouraging,  and provide insight into the possible charge- 
t ransfer  mechanisms  involved in chemisorpt ion  on inverse-supported catalysts. 
It is indeed  interest ing to see that, as the Z n O  film grows on the Ni support ,  the 
charge-transfer  process be tween the H ada tom and  the Z n O / N i  substrate changed 
from an accep tor  to a d o n o r  type and,  in so doing,  reflects the desired aspect of 
approach ing  the correct A E ( Z n O )  value. While  the present  t rea tment  has ignored 
such features as surface and  interface states, and  the problem of self-consistency, 

the calculat ions do provide acceptable values of AE for H on the Z n O / N i  
substrate. Fur ther  work is in progress to inc lude  these features, and  improve the 
findings of these init ial  calculat ions.  

Appendix: Green's function for a one-dimensional infinite s -p  atomic chain 

Consider a one-dimensional infinite chain of alternating s- and p-atoms. Let the orbital energies of 
the s(p) atoms be denoted by a s (ap) with as > ap, and the bond between adjacent atoms by i/3 2. 
The Hamiltonian for this tight-binding model can then be written as 

H o = }~ [%12r x 2r] + a v 12r + 1 x 2r + 11 +/32(12r x 2r + I I -  12r- 1 x 2r[ + h.c.)], (A1) 
r 
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where we assume that the s(p) atoms occupy the even (odd) sites. Forming the Bloch states 

1 ik 
Iks) = ~  ,~. e "1-2r )  

(A2) 
1 Ikp)= ~ r eik{2"+l>/212r + l ) 

the Hamiltonian in these basic functions becomes a 2 x 2 matrix 

Ho(k)= ( as k 2i/32 sin ~ ) .  (A3) 

\ -2 i /3s  sin 2 ~p / 

For notational convenience, we shall define the energy zero to be midway between % and ap, and let 

a~ = - a p  = e. (A4) 

Diagonalizing (A3) gives the band energies 

E k = • + 2/3~- 2/322 cos k. (A5) 

The GF matrix in the Bloch representation of (A2) is 

1 , ( A 6 )  
G(k 'z )=[z l -H~ ' /32(2c~ z - e  

where a = 2 - ( z  2 -  e2)//322 has already appeared in (3.18). The GF's in the site-representation can 
then be obtained by inverting (A2) and using (A6). Thus, 

I ~ dk e~k~,,r ~ z+* (2r']G(z)12r) 
~ /32(2 cos k _  oe ) (A7) 

f ~ dk eik( r, r) z -  e 
(2r'+llG(z)12r+l)= _~7"~ /32(2 cos k -  o~) (A8) 

I_ " dk eik(r, ~ 1/2~ 2i/32sin k/2 
(2r'lG(z)12r+ 1) = = 2~  /32(2 cos k - a)  (A9) 

and 

(2r+ lJG(E)/2r'> = e~k(~_~,+~/2 ~ (-2032 sin k/2) 
/322(2 cos k - ~)" ( a l0 )  

Defining 

~'-~l(z) = (Al l )  
..2~r 2 cos k - a  

(A7) becomes 

<2r'lG(z)12r)-: (z + E)l~r, rj(Z ) (A12) 

and all other GF's can be expressed in terms of this GF as 

Z - - E  

(2r '+ l lG(z)12r + 1> = z-7~e (2r'[G(z)[2r) (A13) 
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(2r'l G(z)12r + 1) = ~ [(2r' I G(z)12r)- (2# I G(z)12r + 2)] 
z q - e  

= (2 r+  l lG(z)[2r '  ). (A14) 

Equations (A13) to (A14) agree with (10) of  [7]. 

The integral of  (Al l )  can readily be evaluated by making the substitution u = #k{r'-r) for r ' >  r [and 
u = e ~k<r-~'~ if r >  r', which gives the same result, so the integral depends only on I r ' - r ] ,  as indicated 
by the LHS of  (Al l ) ] ,  and applying the residue theorem. The result is 

u~'-d  

l[r'--rl(Z) , 8 2 ( U <  __ U > )  , (A15) 

where u> and u< are the roots of  the quadratic equation 

u 2 - a u +  1 = 0  (A16) 

such that l u>[>  1 and ]u<t < 1. (Note that u> u< = 1). It can be shown that 

u> = � 8 9  u < = � 8 9  (A17) 

where 

b(z )  = (c~ 2 - 4 f l 2 )  1 /2  = [ ( 2  .2 - 8 2 ) ( 2 2  - 8 2  - 4 / ~ 2 ) ]  I / 2  (A18) 

with branch-cuts [ - e  - w, - e ]  and  [e, e + w], and w = ~ / e ~ +  4/3 2 -  e. Note that, if z = E + iO + and E 
lies within the valence or conduction band,  so that e 2 < E 2 < e 2 + 4 ~ 8  2, then b (E+iO+)  = 
i sgn (E)~/-4fl 2 -  a 2. Substituting (A17) into (A15) yields 

ul<'-,.I 

Ir,_~l(Z) = ~2b(z) (A19) 

which, together with (A12) to (A14), generates the expressions used in Sect. 3. 
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